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Summary

A method of estimation for the parameters of the multivariate

normal distribution based on the characteristic function (density) and

its sample counterpart is given. These M-estimators are dependent on a

user-specified parameter. The response of the parameter estimates and

observation weights to variation of this user-specified parameter allows

a sensitivity analysis of the data and the model considered as a single

entity. The estimators have desirable robustness properties, are easy to

compute and use, are relatively efficient at the multivariate normal and

are useful in identifying potential outliers and problems with the statis-

tical assumptions or the data. The method is extended to inc? ide multi-

variate experimental designs with attention restricted to the two-way

cross classification. Several illustrations are provided.

Key Words: multivariate normal, sensitivity analysis, M-estimators,

parametric density estimation, adaptive estimation,

two-way cross classification
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1. Introduction

A large number of robust procedures are available for univariate

normal data. The number of procedures for the multivariate normal

distribution are fewer in number. The recent books by Huber (1981),

Barnett and Lewis (1978), and Gnanadesikan (1977) provide excellent

reviews and discussions of a major portion of the literature.

The weighted and integrated distance between the assumed distri-

bution function and its empirical counterpart has recently been used by

Parr and Shucany (1980) to produce attractive robust estimators in the

univariate case. The extension of such procedures to the multivariate

case will, however, present computational difficulties which ma', be in-

superable. This is not the case with the estimators for location and

covariance matrix that we propose. The univariate case was considered by

Paulson and Nicklin (1981). Simultaneous estimators for location and the

covariance matrix are determined from consideration of the sum of integrated

residuals squared where the residuals are defined as the difference between

a Gaussian characteristic function and its empirical counterpart . This

sum is equivilent to the sum of integrated squared differences between a

Gaussian density and its empirical counterpart. The approach that we

propose is equivalent to one of parametric density estimation, but is quite

different in spirit from the work of Parzen (1962).

The estimators we develop depend on a user chosen parameter X (or

parameters Alk). Variation of this parameter from large values (most

efficient) to successively smaller values allows the user to determine

the response in the parameter values to this variation. If the data
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XlX 2...,x n and the Gaussian model are internally consistent, then a

flat response surface will result. If the model and data are not internally

consistent, then the response surface will not be flat and this, will signify

potential difficulties in the data or with the Gaussian model or both..

For each observation x a weight viA is determined. The variation in the

vA as a function of A is useful in determining the weakest interfaces

between .the data and the Gaussian model. Accordingly, an examination of

the response surface of the i as a function of A is useful in identifying

potential outliers. We envision that the primary use for our procedure

will be in performing sensitivity analyses. Secondarily, a robust pro-

cedure results if X is chosen as fixed in the range - < X < w. This

resultant robust procedure is of a somewhat different character from

those discussed by Maronna (1976) and Devlin et al. (1975).

Detailed statistical properties of the modified integrated weighted

squared error are given. An extension of the procedure to examine uni-

variate problem and to the analysis of a two-way layout of ultivariate

data is also given. It is indicated that the procedure can be used in a

cludv ... ing context. Several examples are provided.

2. The Estimation Procedure

The X2 minimum procedure consists of determining estimators of a

set of parameters 81 ' 2 """ 's by minimizing

2 k (vi-npi)
2

X np. (2.1)
1. 2. I np

with respect to the 8's. The pi X Pi ( e 
1 82,"'s) and v i represents

the number of observations which fall in cell i wher6 the k cells con-

stitute a mutually exclusive and exhaustive partitioning of the sample
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space of the random sample xX 2 ,. .. ,x n from a density f(x;e1,82 ... ,@S).
2

The modified X minimum procedure consists of determining estimators of

81,82,...,8 s from the system

k (vi-nPi) Dp. 0

I= Doa. = 0,(2.2)i=1 Pi e

namely the equations which result from differentiation of (2.1) with

respect to 8 while regarding the denominator as constant (Cramdr, 1946,

pp. 424-428). The method we propose for the multivariate Gaussian is

entirely analogous.

Let x 1 , 2 ,...,x n be a random sample of size n from the p-dimensional

Gaussian distribution with pxl mean vector p and pxp covariance vector

V. The density is

f(x) = f(x;u,V) = I exp(- (x-v')T V- (x-p)) (2.3)

and corresponding characteristic function

0(u) = f(u;iiV) = exp(ipT u - uT Vu) (2.4)

where uT = (U1 ,u 2,... ,up) is a lxp vector of real numbers. We shall

generally suppress the arguments u and V of f(x) and O(u). DefinenlApV = A n 1 10(u) - expiux1 2jw(o(u))12du f2.5)

j= R
p

where w(.) is a function to be chosen. The quantity A represents a sum

of integrated weighted squared -,esiduals. We shall designate the solutions

for V and V determined from the system
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2 Re I f 3(u) (0(u) - expiux. )*Iw I(u))j2 du = 0, (2.6)
j=1 R au I

2 Re I !JR (O(u) - expiux.)*.w( (u))I2 du = 0, (2.7)

as modified integrated weighted squared error estimators. The dimension

of the O's in (2.6) and (2.7) are defined from context. The notation '*'

denotes complex conjugate. The equations (2.6) and (2.7) are completely

analogous to the modified X minimum equations of (2.3). The estimators

of U and V determined from (2.6) and (2.7) are M-estimators and are

affine invariant. If w(O(u)) is itself a Fourier transform with inverse

f (x), then (2.6) and (2.7) admit of a representation in terms of densities.

By Parseval's theorem (2.6) and (2.7) have equivalent expressions,

respectively

2( 2r) p n I f(__f(x) x f (x)Xf(x) 9 f(x) - fw(x-xj)) dx = 0, (2.8)
j=l R

RW
pn x f x'

2( 27r) p  I (-- I W(X)(f(x) * f (x) - f (x-x.)) dx = 0, (2.9)
j=1 Rp

R
p

where the symbol x represents convolution of the density f(x) with the

function f (x). It is important to note that 2 (f(x) I f (x)) $W ~av
fv f (x). Expressions (2.8) and (2.9) show that w(O(u)) =

exp(- uT(LV)u) provides an attractive choice since then f (x) is a

Gaussian density with mean vector 0 and variance-covariance matrix XV,

X a constant scalar. The convolution of a Gaussian density with mean Ju

and variance-covariance matrix V with a Gaussian density with mean 0 and

variance-covariance matrix AV is again Gaussian but now with mean p and
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variance-covariance matrix (1+X)V. This choice for w(*(u)) leads to

attractive computational properties as well as some attractive statistical

properties.

Other attractive choices of w( (u)) are easily found. For example,

the choice (0u))=(1--10(u)12) -3 effectively makes (2.6) and (2.7) an
2.

approximate modified integrated correlated X minimum procedure since, for

every fixed u, (0(u) - expiux.) is asymptotically complex Gaussian. Thisj
choice leads to more complicated numerical algorithms but more efficiency.

The most important aspect of equations (2.6) - (2.9) is that they

show that the characteristic function procedure we are suggesting is

generally equivalent to a multivariate parametric
-1n

density estimation procedure since n-  K f (x-x.) in (2.8) and (2.9), is
j=1 (

an unbiased kernel density estimator for f(x) x f (x). Thus the estima-

tion procedure involves a reconstruction of the smoothed-by-f (x) error

density. The density f(x) is assumed a priori while the estimate

n- 1 1f (x-xj) is a kind of posterior estimate based on the kernel f (x)

and the data.

We shall be primarily concerned with the choice

w(O(u)) = exp(- uT (XV)u) (2.10)

in this and the next section. It may be helpful to observe that

differentiation of

= nE 10(u) - expiuxjl 2 exp(- uTDu) (2.11)D " f R

with respect to U and V with subsequent setting of D = XV produces equations

(2.6) and (2.7) under the choice (2.10) of w(.). The use of this observation,

- - t
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although unnecessary, allows for a somewhat simpler derivation of the

estimators; see Paulson and Nicklin (1981) for the univariate version.

The integral A D may be explicitly integrated to give

D R In(u)12 exp(-_u TDu)du

p

2 (2ir? T -1
Sexp{- 1 (x.-Oi (V+2D)- (x.-1)

IV+Dl"

We thus find (fwyer, 1967)

2 (2ir) n -

au n (V+2D) (x.-ii) exp(- ;I Q.(D)) 0,
SIV+-2DI; j=1

(2. 12)

where

Q D )T(V+2D)- 1(X.j (2.13)

We use the right hand side of (2.12) to generate an estimating equation

by setting D XV; then the estimator for the mean satisfies the implicit

equation

xjexp(- 1 Q(V)
j1 (2.14a)

Sexp(- I Q(V)
J=1.

The simultaneous implicit matrix equation for the covariance matrix

V is determined from (Dw~yer, 1967)



1- (i2 -1 exp(- v -  Q.(D))
3V nj~ (V+2D)

1 (2T ) n(V+2D)- I (x.-t)(x.-) (V+2D) exp(- . Q.(D))
JVI.2DI j1 J

1 (20) p n
(2V+2D) 1  0. (2.15)n12V+2DJI j=l

On pre- and post-multiplying (2.15) by (V+2D) and then setting D XV

we obtain

n1 TI {V exp(- k Q (XV) -7 (x.-.)(x -u) exp(- Q.(XV))j Ve1( ,q X) 1+2X JJ
j=J j

- (1+2XN (p+2) V, = 0 (2.16)

whence V satisfies, in conjunction with (2.1 a), the implicit equation

n T
n (x- .)(x.-z) exp(- Q.(XV))

V = (1+2.) -  n =1. (2.14eb)

n 2ex1p- ( Q (XV) - (")

The implicit relationships given in (2.14) suggest that the

estimators and V be computed via a fixed point algorithm with

X= n-  I x. and S = n-1 E (xj-i)(xj-R)T supplying the initial guesses

M0 and V0 respectively. Substitute these initial guesses into the right

hand side of (2.14). New estimates UlI and V1 are obtained from the

left hand side. The new estimates )1 and V1 are now substituted into

the right hand side of (7.14) and the process is continued until some
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pre-specified absolute or relative tolerance between successive estimates

is satisfied. We have found this fixed point algorithm to be effective

in a variety of practical problems and computer simulations. We have

not found it necessary to use second order search methods. This is a

real advantage when the dimension p is large. The question of the values

of X which will be useful in practice is addressed in the sequel.

3. Properties of the Estimators

The estimators for p and V given by (2.10), say -p and V, are

M-estimators as is evident from the estimating equations. They are

explicitly dependent on the user-chosen parameter A, even though this

dependence on X will generally be suppressed for convenience.

The estimators -4 and V are well-defined for X > - . Modification

of the arguments of Bryant and Paulson (1979) shows that these estimators

are consistent for v and V for X - when the x. constitute a random
-

sample from N (V,V). It is obvious from (2.14) that lim i = 1 = n-1
p

xj = x, the usual method of moments or maximum likelihood estimator of

i. If Y1 9 Y2  "'". Yn is a random sample from Np (py ,V y), and for any

nonsingular matrix A, x. = a + A yj, j 1, 2, ... , n, then 1'x = a + Av

and = A AT.x y

The asymptotic variance-covariance matrices of the estimators 11

and V depends on the user-specified parameter A. From (2.12) we find

that the score function for v is

s (x.-i) exp(- Q(D)) (3.1)

ID= AV
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where Q(D) (x-u) T (V+2D) 1(x-v). By a standard Taylor's series expan-

sion the quality n (-u) is asymptotically p-variate normal N (0, )

where, for easily computed expectations,

COV( i) IE(~ E(s sT) JE('L)I 1 ID=XV

= {- (1+C)-1(P+ 2) i}-l{(1+2c) - (P+2 )V1{(l+c)-(P+ 2 ) i}-1

- (1+2c+c2) (p+2) = 481.42 ) 1(p+2) V, (3.2)1 +2c } 3+81+41 2

where c = (1+2) -  and I is the pxp identity matrix. The aaymptotic

efficiency of relative to V is the ratio of determinants of covariance

matrices, namely

e6j) (38+~ 2) 1 p(p+2) (3.3)

Lf+8X+ 4A

Table 1 gives a short listing of the pth root of these efficiencies.

Table I

pth Root of Asymptotic Relative Efficiency of

X

0 1 2 4 O

1 .65 .91 .96 .99 1

2 .56 .88 .95 .98 1

p 3 .49 .85 .93 .98 1

4 .42 .82 .92 .97 1

8 .24 .72 .87 .95 1
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The efficiency of declines rapidly with increasing dimension

for low values of A. Efficiency of j increases with increasing A as

becomes increasingly like R.

The asymptotic variance-covariance matrix of the &p(p+l) esti-

mators Vjk' jsk of I is considerably more difficult to obtain. The

covariances covOjkVm) can be determined from the score functions

determined from (2.12). For example, from (2.16) we find that the

score function for Vkk is

SVkk exp(- k Q(XV)) - c(xk- )2 exp(- Q(XV))

(1+2X) (p+2)
- 2+2- I Vkk

where xk is the kth component of the vector x and c=(1+2X) 1. The

asymptotic variance of V is
;kk

as2

Vkk E(Skk

Straightforward, but tedious, computations gives the asymptotic

efficiency of Vkk relative to the maximum likelihood estimator Vkk as

eVk)1 ( 2 +2XN p+4
-22/ 

3+2)2 12 p6++X 1+2X p+2

('2'/ (3+2 )2  (2+2 /

Selected values of these efficiencies are given in Table 2. The

efficiencies of Vjk are about the same magnitude as those for Vkk It

would be desirable to have the efficiencies of the matrix estimator

relative to V, the maximum likelihood estimator, but these values

would be troublesome to obtain and would not be much different from

(3.4).
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Table 2

Asymptotic Efficiencies of the Estimators Vkk

Ai

.5 1 2 4

1 .78 .87 .94 .98 1

2 .68 .77 .84 .88 .90

p 3 .59 .69 .76 .80 .82

4 .52 .62 .69 .73 .75

5 .46 .56 .63 .67 .69

In the one dimensional case, e(Vkk) tends to unity with increasing

X. In the p>1 dimensional case the efficiencies e( kk) are bounded

away from unity. The estimators V thus have a different character in

the cases p=1 and p>1. The efficiencies of Vkk for fixed X decline

rapidly with increasing dimensionality. This implies that the higher

the dimensionality, the larger the values of X one should like to use

if efficiency is a major consideration in the choice of X.

The nature of V as X- c may be determined by an application of

L'Hospital's rule. Some elementary manipulations yield the implicit

equation n
I(x -)(xj-) T

V j=1 (3.5)
n T-1

n(p+2) - 7 (x -P) V (x -U)j=1

that the estimator V must satisfy asymptotically in A. When p=1 (3.6)

may be rearranged to give the usual maximum likelihood or moment esti-

mator for V. But for p22 the estimator cannot be so arranged; thus the
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efficiencies in Table 2 are bounded away from unity when p>l and A=-.

The curious estimator of V defined implicitly in (3.6) does not seem to

be especially interesting.

The estimators vill v1 2  ''' Vlp v22 ' ... ' pp are asymptotically

p(p+l) variate Gaussian and are asympotically independent of 5 which

is asymptotically p-dimensional Gaussian.

There are a number of measures of qualitative robustness but

the most important is the influence function. Most of the other measures

are derived from the influence function. The influence function is

simply proportional to the score function (Huber, 1981, p. 45 ). The

influence function at the p-variate Gaussian distribution Np (UV) is

as -1P
IC(x; ,N) = IE&)

;-") sD=XV

= (I+c) (p+2)(x-p) exp(- ! (x-p) TV-.1-)) (3.6)

This function is bounded and redescending to zero for all - < X < .

It also shows that the assumed Gaussian distribution is playing an

adaptive role in the estimation of P. Furthermore, the component x1

of the vector x plays a role in the estimation of the components 02' U39

•, of V as well as Ul" Figures 1 provide contours of this influence
pV

function for j for several values of X and correlation p at the standard bivariate

Gaussian distribution. The forms of these contours suggest that the

procedure will adaptively cluster the observations assumed to follow a

Gaussian parent according to those which belong to the parent and those

which do not - provided X is small enough.
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The influence function for at N p(,V) is more difficult to

obtain, at least computationally. For the j,k element of (2.12), we

note that the partial derivative of this element with respect to V is

a pxp matrix and hence differentiation of (2.12) with respect to V is

facilitated by the introduction of tensors. We need not go to such

lengths. The shape of the influence function is the important property

and it is determined by the score function sV. The influence function

for V at Np (p,V) has shape determined by

S = c(x-p)(x-p)T exp(- Q(XV)) + (l+c) (p+2) V - V exp(- Q(XV))

(3.7)

This function is bounded and re-descending. It does not redescend to zero,

however, but rather to a positive definite matrix constant. Score functions

of sv. " for X=1 and several values of correlation p at the standard bivariate
ij

normal distribution are given in Figures 2. The contours are not closed

for large values of the arguments x I and x2 of the vector x. However, the

appearance of these contours still suggest the possibility of clustering

by the estimation procedure. Moreover, the procedure can also be used to

determine observations which might be trimmed from the sample, if trimming

or peeling were for some reason a desirable thing to do. The observations

with relatively low values of the final weights v. = exp(-x2-x Ti1(x

are those which might be peeled off.

The estimators 11 and V are not in the class of those considered

by Maronna (1976) even though they are similar in form. Devlin,

Gnanadesikan, and Kettenring (1981) report favorable results obtained

with the use of Maronna- and Huber- type multivariate estimators.



Figur~e 2a. Score function for .2at the standard
bivaz'iate normal, p=O, X=1 (Azimuth =450,

Elevation 300).
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Figuire 2b. Score function for at the standard

bivariate normal, p=.g, X=I (Azimuth 4 ~50,

Elevation 2300).



Figure 2c. Score function for ' at the standard12
bivariate normal, p=-9, X=1 (Azimuth 40

Elevati.on 300).



4. Choice of X

There are two possible uses for the procedure we propose here.

The first is to choose a single value of X, possibly based on efficiency

considerations, and use it as a robust procedure. The choices X=1 or

A=2 provide high efficiencies and good robustness properties. The

second use is the one for which the procedure was developed and which

has proved most useful in practical applications. We use the procedure

to generate a sensitivity analysis. In a practical exploratory setting

we first compute the maximum likelihood estimators and use these for

starting values in the iterative algorithm. Next we take a value of X,

4 or 2,and examine the behavior of the estimates. Finally, we would take

X=1 or and gradually decrease it. The response surface of the parameter

values and the final weights as a function of A are of primary interest.

In the process we determine estimates and final weights vA = exp(- (1+2X) -

(xj-)T9 - (x.-i)) associated with each observation. If the estimates are

sensitive to this variation in A, then there are problems associated with

either the data or with the Gaussian error model or both. The particular

observation(s) which is (are) the potential cause of the sensitivity are

identified by low values of vix vis-a-vis the whole set of these weights.

As c increases (A decreases) observations a distance removed from i receive

lower weight. This discussion will be subsequently illustrated with an

example.

The derivation which led to the estimators given in (2.14) did not

require that A in (2.14a) be the same as in (2.14b). We could for

example use X=1 for P and X=2 for V. Under such a choice we would then

be able to fix the efficiencies that might be desired for both U and V.
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The asymptotic efficiencies are appropriate because some evidence is

available that these estimators approach their asymptotic distributions

very rapidly.

Furthermore, we need not have restricted ourselves to a scalar

value of X in order to arrive at (2.14). At the expense of greater

algorithmic complexity we could have chosen values X.. corresponding

to each v.. in the covariance matrix V. Let the pxp matrix L = (1+2X..)

and the pxp matrix M = (2+2Xij) and let LxV = ((1+2A ij )vij) denote the

Hadamard product of L with V. Then by arguments similar to those

employed to arrive at (2.14) it may be shown that the more general

estimators for p and V satisfy the implicit relations

n x. exp(- (x.- 0)T(LxV)- (xj-))
n (4.la)

Z exp(- (x-P) T(LxV)- (x.-I))
j=1

and

LXV I exp(- (-)T (LxV)-'(x-i))- 11 n L (LxV)
j=1 3 MXV 3

+ I (x.-,)(xj-)T exp(- (xij)T(LV)-l(xj-)), . (4.1b)
j=1

2+2X. 
.

The identity MxV = \1+2X..) x (LxV) is useful in computing (4.1b). The

1]

estimators of v.. are computed in a component-wise fashion from the final

iteration of (4.1b). These estimators would be of interest when it is

desired to treat different components of the x. differently. Such a3

situation arises in the bounded influence regression problem (Belsley,

Kuh, and Welsch, 1980) where we may wish to be relatively critical in our
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analysis of the dependent variables but less so for the independent vari-

ables since considerable information can be associated with a wide spread

in the independent variables.
Specifically, let us partition the vectors x. as (y. ,.,,z z ..... ) =

J 1]2 qj
(yj,z.) where q = p-1. Let y, be the dependent variable in a regression

framework and let z. represent a q-vector of independent variables.

Corresponding to this partition we have PT = (P 1,v T) where E(y.)

E(z.) v. Further,

V1 1  v . . Vlp

V11 V12 v 21 v22 • 2p

V 21 V 22

Vp1 Vp2 . pp

represents the corresponding partition of the covariance matrix. The

regression of y. on z. is (Anderson, 1958, Ch. 2)

E(y jz =-i- + V1 2 V2 (z.-). (4.2)

We may wish to estimate P1 and v11 in a more critical fashion than V1 2

and this in turn in a more critical fashion than V2 2 . To achieve this

we would take values X11 associated with vI, X1 2 associated with V12'

and X2 2 associated with V22 where A11 < A1 2 < X22. The matrix L would

thus be



-18-

11 12 12

X12 X22 X 22 X11 X 12T

11 12 

X12  A22  A 1-2-22

T
where I = (1,1,...,4) T , a qxl vector of ones. For exploratory and

sensitivity analysis purposes we could consider first, say, X1I, A1 2 ,

X221 next A11l X12 ' A22, and in general kXli, kA1 2, kA2 2 for some

values of k. Points z. far out and isolated in factor space or points whose
I

response yj give rise to large residuals will be identified by the response of the

final observation weight VjL = exp(- (xj- )T (LxV)- (xj-)). For a fixed value

of L, an estimate of the regression equation E(ylz) is obtained by substituting

parameter estimates ui, 712 ' V2 2 , in (4.2). Some of these ideas will

be subsequently illustrated.

5. Examples

Example 5.1. The basic data for this example are taken from

Anderson (1958). The first ^_5 ?oints consist of the first two (of four)

components of this data with five additional (outlying) observations

appended. We have chosen X=4, 2, 1, for this illustration. Table 3

provides the estimates of the means and covariances as well as the maximum

likelihood estimators. Table 3 also summarizes the weights

via = exp(- S -(x- ) (x- )) associated with each point on the assump-

tion that the data follow a single multivariate Gaussian distribution.
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With X = + , all weights are the same. As X decreases from + , the

weights become differentiated. The 5 outlying observations are rendered

distinctive by their diminishing weights v j as X decreases. This

indicates that these observations are not consistent with the remainder

of the observations and the assumption of a single Gaussian distribution.

This is further highlighted by referral to equations (2.8) and (2.9).

At convergence of the iterative estimation procedure we find for e=u or

e=v
a f(x) X 1 - n

ff W f ( x) (f(x)xf (x) - n- f (x-xI)) dx = 0 (5.1)

R 
j=l

p

where f (x) is the Gaussian density with mean 0 and covariance matrix AV,

which implies that the density f(x)xf (x) is being estimated by

g(x) = n- 1  xl exp(- -L (x-xj) - (x-x).

j=1

The density f(x)*f (x) may be regarded as a prior distribution, (x)

as a posterior density given the x.. Figures 3a, 3b, 3c, depicts what

the estimation procedure perceives as X decreases. For large X the

density estimate i (x) is approximately uniform. At A=2 the density

estimate contours are smooth except for some slight distortion in the

area of (195,130). At X=I the probability surface is becoming distorted

in the vicinity of the contamination but the distortion is not yet pronounced.

Compare the estimates of the parameters and the observation weights .i.

At X= the distortion has become dramatic and indeed separate "hills"

for the outlying points have formed. Again compare the estimates and v.

for X= . Since the density estimate perceives the outlying observations



Table 3a

Sensitivity of Observationa) Weights
(xO0) to Variation in A

x x 4 2 1 .5

1 179 145 36 39 45 50
2 201 152 33 36 23 16
3 185 149 37 41 47 55

4 188 149 37 40 44 49
5 171 142 34 35 39 39

6 192 152 37 39 44 48
7 190 149 37 39 41 42

8 189 152 37 40 47 53
9 197 159 35 36 39 36

10 187 151 37 41 47 55
11 186 148 37 40 45 50

12 174 147 35 37 38 36
13 185 152 37 41 46 50
14 195 157 36 38 42 43
15 187 158 35 36 30 20

16 161 130 27 23 17 8
17 183 158 34 34 22 10
18 173 148 35 36 33 27

19 182 146 37 40 45 50
20 165 137 31 30 30 25
21 185 152 37 41 46 50
22 178 147 36 39 45 49
23 176 143 36 38 42 45
24 200 158 34 35 37 36
25 187 150 37 41 47 54
26 200 130 18 6 0 0
27 200 135 23 11 0 0
28 165 160 24 13 1 0
29 195 170 28 22 6 1
30 220 170 23 18 13 6

Table 3b

Sensitivity of Parameter Estimates to Variation in X

x
4 2 1 .5

p1  185.5 185.2 184.9 4.84.9
12 150.1 150.3 149.9 149.7
V 148.1 148.8 155.4 136.6
v22 80.2 74.1 65.7 52.3

P12 .52 .67 .85 .87
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Figure 3a. Contour set of 9,(x) of example 5.1, X=2
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Figure 3b. Contour plot of (Cx) of example 5.1, X=1



Figure 3c. Plot of i,jx) for data of example S. 1, A=.5
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as not consistent with the remainder of the data and the single Gaussian

assumption, the reason for the down weighting of the outlying observations

has become clear. If we let AX-O+, the density estimator becomes a set of

Dirac delta functions located at each point.

At X= , the procedure has effectively clustered the data with the

outlying observations excluded from the main cluster. Accordingly, as X is

varied, a dramatic change in the estimators implies the existence of

clusters of observations different from the main cluster and not consistent

with the prior assumption of strict Gaussianity. The reconstruction of

the error density becomes increasingly dependent on the data as A decreases

and hence the procedure is increasingly critical with decreasing A.

Example 5.2. If (yj, zj), j = 1,2,...,n represents a random sample

T
from N 2(VV), P = (U1V) , then the regression of y on z is given by

+ -1 (z-V) 0 z9

E(y1Z) V12 22 o

say, and the O's may be computed from the estimates of p and V. The

data for this example is taken from Andrews and Pregibon (1978) who were

concerned with regression models. The data are presented in Table 4.

The least squares or maximum likelihood estimates are also presented in

Table 4. We shall use the L matrix version of the modified integrated

squared error procedure as discussed in section 4. We wish to be most

critical with respect to estimation of v1 1 and p., to somewhat less critical

with respect to estimation of V1 2 , and least critical with respect to esti-

mation of V22 and v. Thus we take, for any single application such as

robost regression, X11 < X12 < X 22 This choice seems to be particularly

appealing since, in a regression framework, we wish to retain the high



Table 4a

Sensitivity of VjL (xlQO) to Variation in AI1II x12 ' X22

(Xl1 1 1 12 ' X22 )

x (2,4.8) (1,2,4) (.5,1,2)

1 95 15 100 99 97
2 71 26 72 48 20
3 83 10 85 76 65
4 91 9 96 93 88
5 106 15 88 82 74
6 87 20 96 89 72
7 93 18 99 96 87
8 100 11 98 97 97
9 104 8 95 91 84

10 94 20 96 91 78
11 113 7 81 70 54
12 96 9 99 97 95
13 83 10 85 76 65
14 84 11 88 81 71
15 102 11 97 95 93
16 100 10 98 97 96
17 105 12 92 89 84

18 57 42 40 11 0
19 121 17 50 33 19
20 86 11 92 86 79
21 i00 10 98 97 96

Table 4b

Sensitivity of Estimates to Variation in X1II x1 2 ' X22

(2,4,8) (1,2,4) (.5,1,2)

1 13.4 12.8 12.3

v 94.6 95.3 95.9

V 45.6 32.7 23.6

v12 -49.2(-.56) -29.2(-.43) -14.8(-.27)

v22 168.3 143.9 125.1

The estimate of correlation is given in parentheses
along with v12

- . .. . . . .. .. . . . . ... . .. . , ,, . ., ,, . . . . , . . .... . ., . . ...L0. ,
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efficiency associated with substantial spread in the independent variable.

If on the other hand, we wish to be aware of extreme values of the inde-

pendent variables, a sensitivity analysis may be more appropriate. We

first take A1 1 2, A12= 4, A2 2 8. The weights VIL = exp(- Cx (LV)1 )(xj-p))

are presented in column 3 of Table 4. Next we take X 11=1, X12=2, X2 2 =4 and

the results are presented in column 4. The parameter estimates are sensi-

tive functions of L. The points which are most influential or potentially

inconsistent vis-a-vis the linear model with a Gaussian error structure are

determined from observational weights VjL' i.e. those with low values of

v. . Three points, 2, 18, 19, are especially singled out. Point 18 repre-

sents an extreme point in the z-space and is most influential on the estimate

of the slope 1 = v12/v22 of the regression line. Point 2 has the second-

most extreme value of z. Point 19 produces an extreme residual. Analogous

results obtain if all X.. = A and X is varied in order to determine the13

response of the parameter estimates and the observational weights to

variation in A. In many cases, not all, taking just a single value of X

(or set of values A..) provides sufficient information concerning the
i]

response of the parameter estimates and weights v X(or VjL) to variation

in X (or L) in the sense that if X (the A..) were further decreased, the

trend in response will be continued. In these cases a robust analysis

will lead to the same conclusions as the sensitivity analysis. In some

cases, a change in trends will be observed as X decreases.

Example 5.3. It is possible to produce non-Gaussian data for which

variation in A does not lead to dramatic changes in the parameter estimates

or low values of viA. The three dimensional data for this illustration

are taken from Gnanadesikan (1977, pp. 50-52). The 61 triads of his
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example 7 were obtained by appending a standard normal deviate to each of

the coordinates on the surface of a specified paraboloid. The two-

dimensional scatter plots of these data are not suggestive of the data in

three dimensions lying near a curved surface. We determine the response

of the parameter estimates to changes in X. The mean vector estimate

at X=8 is (-3.54, 4.72, 26.94) while at X= it is (-3.53, 4.70, 26.95).

The variance estimates at X=8 are (3.81, 2.33, 2.94) while at X= they

are (4.43, 2.76, 3.79); the correlation estimates at X=8 are (-.51, -.47,

.20) while at X= they are (-.56, -.50, .27). The estimates of the mean

are remarkably stable but the estimated variances increase with a decrease

in X. These characteristics imply that if the data or the Gaussian dis-

tribution model is not appropriate, the best place to look for difficulties

is at the centroid. This is confirmed by the distribution of the weights

viW especially for X=;. For example, for XA=, the largest three weights

viA, .89, .84, .82, which indicate that there are no observations near

the centroid. This deficiency of observations near the centroid is also

determinable from X=8 results, but it is highlighted at the smaller values

- 2of X. A plot of -2(1+2X) log v on X paper with 3 degrees of freedom

further emphasizes the inappropriateness of the Gaussian assumption.

6. Multivariate Two-Way Cross Classification

The system of equations (2.6) and (2.7) are readily extended to

include multivariate regression and design situations. We indicate how

this may be done for the case of a two-way cross classified design. The

arguments are similar for other designs and regression problems.
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The two-way cross classified model may be written

E(Xjkt) = + a. + (6.1)

j 1,2,...,a, k = 1,2,... ,b, 9 = 1,2,...,njk, njk -. The x jk

are assumed to be p-dimensional Gaussian with covariance matrix V. The

quantities U, ai, 8k are pxl location vectors. Define

0 k(u) exp{iuT(1 + a. + - uTVul, (6.2)

jk kfjk(X =27rVI1- exp{- (x-p-a j- k)T - (x-P-a j- k )1, (6.3)

and

w(O(u)) = exp( - -u TVu), (6.4)

f (x) = 12wV1- exp(- xT(XV)-lx) . (6.5)

The system of equations parallel to (2.6) and (2.7) are

a b nk f w 1k(U)

I k. j e (0 k(u) - expiuxjkZ))* Iw(¢(u))I2 du 0 (6.6)
j=1 k=1 1=1 R e j k

R
p

or, equivalently

a b njk , afk(X) x

(2w)P E I E ae X f(x)( fjk(x)f W(x) - f (x-x jk))dx 0,
j I k=l X=1 f

R
p (6.7)

with arguments e=P, ai, 8k' V, i = 1,2,...,a, k = 1,2,...,b. Equation

(6.6) may be explicitly evaluated and leads to the implicit equations

E(xjkt- - "  - V vk) X = 0,
jk V



-23-

k ( x k  - 8k) vjkk£, X = 0, j 1,2,...,a

k ( - - - 8k VjkL X  0, k = 1,2,...,b.

The rank of this system of equations is a+b-1. The first of these equations

suggest the constraints

a vjkl 8k vj k = 0 (6.8)
j k£ I k£ Z

be appended to produce a full rank system. Along with (6.8) we obtain

the implicit equations

k L 
(6.9)

Xk k
j k t

k - -, j 1,2,...,a-1, (6.10)

jk2. -vjkkX -k X

-1 j k a kk vk Vjk.,

, Z k 1,2,...,b-1 (6.11)

j z

and
(xjkt- )I -L j* -k)(Xjkt 'j k - j. - B

V =(1+2X)
- I j k I

_k, 22X+2, k(p+2) )

where

VjktX exp(- (1+2X) 1(x-k£ - - a - 8 k )TV-(x-kI - - a. - k

(6.13)
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Observations x jkt which require special consideration are indicated, as

in section 5, by low values of V , vis-a-vis the whole set. A low value
jk2.,Xv

of Vjk£,X may mean that the particular observation is a potential outlier,

Too many low values will imply that the model assumption of a single

Gaussian parent may not be warranted or that the model is mis-specified

or that there are indeed a number of potential outliers. In the latter case

a goodness-of-fit test will usually declare against the Gaussian error

distribution. Furthermore, if njk > 1 and we find that individua' cells have

low values v jkZX associated with them, then interaction in the table is a

distinct possibility. In this case we generalize the model to

E(x jk) = + aj + ak + Yjk"

and proceed accordingly.

This multivariate procedure can be especially useful for exploratory

purposes. Determination of the sensitivity of V jk£, and the parameter

estimates to changes in X will serve to uncover potential problems with

the data or the model considered as a unit. The procedure is computationally

inexpensive and easy to use. This procedure does not apparently lend itself

to hypothesis testing problems per se. However, it could be effectively

used in conjunction with tests of hypotheses. If the sensitivity analysis

uncovers some difficulty with the data or the model, then a test of hypothesis

may be appropriate.

Example 6.1. The data (Table 5) for this example were taken from

Anderson (1958, p. 218) who gives some additional background concerning

these data. The first component of the observation vector is a barley

yield in a given year; the second component is the ..ime measurement made

the following year.



Table 5

VARIETIES

1 2 3 4 5

81 105 120 110 98
81 82 80 87 84

147 142 151 192 146100 116 112 148 108

3 82 77 78 131 90
o 103 105 117 140 130
E-

Q 120 121 124 141 125
99 62 96 126 76

99 89 69 89 104
66 50 97 62 80

87 77 79 102 96
68 67 67 92 94
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We fit the model (6.1) to this data by the method of maximum

likelihood and by the modified integrated squared error method for various

values of X with the objective of performing a sensitivity analysis. The

results of this analysis are summarized in Tables 6 and 7. We have only

given the results for X=2 since the response of the parameter estimates

and the final weights to decreases in X continues the trend evidenced in

Tables 6 and 7. Table 6 indicates that the largest change occurred in

the parameter a5 and the covariance. The correlation increased from .22

to .37. The final weights vjk,2 are given in Table 7. Observation (5,3)

receives an especially low weight while observations (1,3), (3,4), (5,4),

and, to a lesser extent, (2,4) also receive low weights. It is likely

that (5,3) is an outlier although we have not applied any tests of dis-

cordancy. We are suggesting that low weights raise the suspicion of

potential outliers or other difficulties with the data and the model

(Gaussianity, additivity, etc.). We are not suggesting that this procedure

be used as a formal test for outliers. These observations have had the

effect of reducing the correlation between the first and second year yields.

A rough rule of how improbable the weights are may be determined by

the following considerations. The quadratic form (x. -) V -(x.k-i) is
2

approximately X on 2 degrees of freedom. The 1% point of this distribution

is 9.21. Roughly, for X=2, we would expect weights less than

exp(- 9.21/(2(i+-2A))) = .40 about 1% of the time.

Additional reduction of A say to 1.5 will produce a somewhat stronger

version of basically the same results. However, when X is decreased to

unity the procedure starts to break down in the sense that the singled-out

observations above receive weights near 0 and a few of the other originally



Table 6

Maximum Likelihood (ML) and Modified Integrated
Squared Error (X=2) Parameter Estimates

1 2 83 84 85

109.1 -6.4 - 7.2 -5.6 18.4 0.8ML 93.2 -7.0 -12.8 1.7 16.0 2.2

108.8 -5.7 - 7.2 -3.5 18.6 1.092.8 -6.1 -11.2 -1.6 17.9 4.2

a1  a 2  a3 a4 C5 a6

- 6.3 46.5 -17.5 17.1 -19.1 -20.9
-10.4 23.6 25.8 -1.4 -22.2 -15.6

- 7.9 45.3 -19.7 16.9 -12.7 -21.4
-10.8 22.3 25.3 - .1 -25.5 -16.1

109.3 .22 101.9 .37
26.7 133.9 42.4 125.5

Table 7

Final Weights V (x100)
jk,2

VARIETIES

12 3 4 5

1 73 85 56 85 99

2 94 32 100 66 88

3 94 98 93 57 95

4 87 68 98 77 69

5 93 97 12 46 93

6 95 98 94 98 87
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low weights have been further reduced. The first component variance is

dramatically reduced. The reason for this is that some of the observations

are separated in such a way that the empirical density estimator around

it intersects only slightly with the empirical density estimator around

other observations. Accordingly, multiple densities are perceived by the

procedure and the more isolated and less massive with respect to the

model (6.1) and the Gaussian assumption are basically excluded from the

estimates by virtue of their low weights.

When X=O, the densi.ty estimate f (x-x jk)of (6.7) around each point

Xjk becomes a Dirac delta function. This fact does not ensure that all

but a few weights will tend to zero, however. If the model (6.1) is

truly appropriate and if the data XjkL, k>1 replicates are truly Gaussian,

then the variances in the covariance matrix will ultimately begin to increase

with further decreases in X.

It would be desirable to have an estimator of V whose influence function

redescends to zero. Such an estimator is derivable from the modified inte-

grated squared error procedure but we do not present it here. Still another

approach, involving a generalization of Shannon's information or likelihood

produces very similar estimators.
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